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Surface tension of cavitation bubbles
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We have studied homogeneous cavitation in liquid nitrogen and normal liquid helium.
We monitor the fluid content in a large number of independent mesopores with
an ink-bottle shape, either when the fluid in the pores is quenched to a constant
pressure or submitted to a pressure decreasing at a controlled rate. For both fluids, we
show that, close enough to their critical point, the cavitation pressure threshold is in
good agreement with the Classical Nucleation Theory (CNT). In contrast, at lower
temperatures, deviations are observed, consistent with a reduction of the surface tension
for bubbles smaller than two nanometers in radius. For nitrogen, we could accurately
measure the nucleation rate as a function of the liquid pressure down to the triple
point, where the critical bubble radius is about one nanometer. We find that CNT
still holds, provided that the curvature dependence of the surface tension is taken into
account. Furthermore, we evaluate the first- and second-order corrections in curvature,
which are in reasonable agreement with recent calculations for a Lennard-Jones fluid.
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Cavitation, the formation of a vapor bubble in a metastable liquid below its saturated
vapor pressure Psat, is important in many fields, ranging from engineering (ultrasonic
cleaning, propeller damage. . . ) to natural sciences (blocking of sap ascent. . . ). While, for
decades, the theoretical framework for cavitation has been the classical nucleation theory
(CNT), recent experiments using hexane (1), heptane (2), ethanol (2), argon (3), and
nitrogen (4) have shown that measured cavitation rates are many orders of magnitude
larger than those predicted by CNT.

This discrepancy is generally attributed to a dependence of the surface tension σ on
the interface curvature. Indeed, in the CNT, the liquid–vapor interface is assumed to be
infinitely sharp, with a surface tension σ∞ equal to that for a planar interface, so that the
energy barrier for nucleation reads:

E CNT

b
=

16π
3

σ 3
∞

(Pv − Pl)2 , [1]

where Pv and Pl are the pressures inside and outside the bubble, respectively. In the
above experiments, however, the interface thickness is not negligible compared to the
nanometric size of the critical nucleus. As a result, the CNT may overestimate the energy
barrier, accounting for the measured cavitation rates. The modification of the energy
barrier can be computed from density functional models (5). A simpler approach consists
in keeping the CNT formalism, in particular Eq. 1, while allowing the surface tension
σ to depend on the radius of curvature R. It was recently demonstrated that such an
approach is successful for cavitation in water (6).

To first order in curvature, the dependence of the surface tension is expected to be of
the form:

σ∞/σ (R) = 1 + 2δ∞/R, [2]

(with R < 0 for a bubble), as demonstrated a long time ago by Tolman (7). Accordingly,
δ∞ in the above equation is generally called the Tolman length. Beyond first order,
it is only recently that many theoretical works have attempted to calculate σ (R) for a
bubble or a droplet, using direct molecular dynamics simulations (8–10), various density
functional calculations (11, 12), or both (13, 14). For Lennard-Jones (LJ) fluids, a
consensus has emerged that, first, δ∞ is negative and of the order of −0.1dlj (dlj is the
LJ length scale). Second, as soon as dlj/|R| > 0.1 which is the case in most nucleation
experiments, the second order correction cannot be neglected so that Eq. 2 does not
capture the R−dependence of σ .

Experimentally testing these predictions through cavitation measurements is a
prerequisite for using the concept of an effective surface tension σ (R) and the simple
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and powerful tools of capillarity in situations where the interface is
highly curved, ranging from homogeneous nucleation of droplets
to sessile nanodroplets (15, 16), meniscii in mesopores (17) or
liquid interfaces under an AFM tip (18). Experimental data are
however scarce. Interpretation of most cavitation experiments in
simple fluids only yields the effective surface tension for a single
value ofR, equal to the radiusR∗ of the critical nucleus (3, 4). This
single valueσ (R∗) is not enough to test the validity of Eq. 2 and to
determine first- and second-order corrections in curvature. More
detailed experiments have been performed in ethanol and water
(19, 20). The analysis of the pressure dependence of the cavitation
rate points to the relevance of the second-order correction, but
its estimate may be specific to these fluids and has been obtained
only in a restricted temperature range.

In a recent work, we demonstrated that, by using porous
materials made of assemblies of individual pores with an ink-
bottle shape, it is possible to accurately measure the cavitation
rate of hexane at room temperature and a given liquid pressure in
a single shot experiment (1). Here, we extend this new technique
to the study of cavitation in two simple cryogenic fluids, helium
and nitrogen, over a large range of temperatures. By monitoring
the fluid content in the pores when decreasing the liquid pressure,
we can determine the cavitation threshold, as well as the cavitation
rate around this threshold. At high temperatures, we show that
our results are in good agreement with the CNT; in other words,
the critical radius is large enough to ensure σ (R) = σ∞. At
low temperatures, our measurements evidence a decrease of the
surface tension, with respect to its bulk value, due to the curvature
of the critical bubble. Furthermore, for nitrogen, the optical
technique used to monitor the fluid content allows to accurately
measure the pressure dependence of the cavitation rate, hence
to probe the second-order correction to σ . Using the procedure
introduced by Bruot and Caupin (20), we have extracted from
the experimental data the first- and second-order contributions
to σ (R). These contributions are found to be of the same order
of magnitude and both are in reasonable agreement with density
functional theory (DFT) predictions.

Measurement of the Cavitation Threshold

Cavitation is studied in membranes of porous alumina (1) or
porous silicon (21). The native independent pores are roughly
cylindrical, with a diameter and a length which can be respectively
tuned in the ranges 10 to 50 nm and 1 to 10 μm by varying the
synthesis conditions. Their typical volume Vp is of the order of
10−21m3 (Materials and Methods). In order to obtain the ink-
bottle shape necessary for evaporation to proceed by cavitation,
the pore aperture is reduced by atomic layer deposition (21).

Cavitation is monitored by measuring sorption isotherms, that
is the amount of fluid in the pores as a function of the vapor
pressure Pv in the gas reservoir. For nitrogen, we use optical
interferometry in white light (WLI) which yields the optical
thickness L of the sample. We have checked that the variation of
L is proportional to the amount of fluid inside the pores (22).
WLI is more precise and less prone to drift than volumetry. While
it only probes the illuminated part of the sample, the latter still
contains a huge number of pores (of order of 109, about one-tenth
of their total number).

A typical optical isotherm is shown in Fig. 1, where the
difference 1L ≡ L(Pv)− L(Pv = 0) is plotted as a function of
the vapor pressure Pv. First, Pv is increased up to the saturation
pressure Psat in order to fill the pores. Then, Pv is decreased
at a constant rate. In the first step, the optical thickness barely
decreases: the liquid–vapor meniscii are pinned at the aperture
of the pore and the sample remains saturated with liquid. At
some point (Pv . 0.8Psat in Fig. 1), 1L starts to decrease,
corresponding to the recession of meniscii in the largest apertures.
This recession regime occurs in a wide pressure range as there
is some dispersion in the aperture diameters, due to both the
initial dispersion in pore diameter and the ALD process. Finally,
the sharp decrease of 1L over a narrow pressure range around
0.67Psat is the signature of cavitation in the pores whose aperture
radius is smaller than a temperature-dependent critical value. The
cavitation threshold P∗

v
is defined as the pressure at mid-height

of the cavitation step. Here and below, we use the suffix ∗ for
quantities evaluated at this threshold. The corresponding liquid

Fig. 1. Nitrogen optical isotherm at 90 K for the porous alumina sample A (mean pore diameter 33 nm, Table 1). Upon decreasing the pressure, meniscii start
to recede in the larger apertures at PV ' 0.8Psat, until cavitation occurs around 0.67Psat. Inset: sketch of meniscus receding (Right) and cavitation (Left) in an
ink-bottle pore.
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Fig. 2. Nitrogen optical isotherms for the porous alumina sample B (mean
pore diameter 19 nm, Table 1). The cavitation pressure and the height of the
cavitation step increase with temperature.

pressure at the threshold, P∗
l

, is derived from phase equilibrium
between the vapor and the metastable liquid (Material and
Methods). Away from the threshold, Pl, the liquid pressure inside
the pores, is similarly derived from Pv. In the following, we will
use Pl to measure the departure from bulk-phase equilibrium
Pl = Psat.

Such isotherms have been measured for nitrogen in a large
temperature range in several porous samples with various pore
diameters (Table 1 in Material and Methods). Fig. 2 shows a
series of isotherms measured on the porous alumina sample B.
As the temperature increases, the threshold P∗

v
and the fraction

of pores emptying through cavitation increase. This is due to the
temperature variation of σ∞ which favors cavitation with respect
to meniscus recession at high temperature (21).

Similar experiments have been performed for normal liquid he-
lium at temperatures above the superfluid transition ('2.17 K).
In this case, the adsorbed amount is measured by a continuous
volumetric method (21). During evaporation, the cell is pumped
through a fixed impedance so that the rate of decrease of Pv varies
through the cavitation stage: P∗

v
is then obtained as the pressure

where |Ṗv| is minimal (SI Appendix).

Surface Tension from Cavitation Threshold

In order to obtain the surface tension at the scale of the critical
bubble, we first compute the energy barrier at the cavitation
threshold. According to CNT, the nucleation rate J(Pl) at a
fixed liquid pressure Pl is given by

J(Pl) = J0 exp−Eb(Pl)/kbT , [3]

with J0 being a prefactor which is controlled by the dynamics of
the critical bubble (5, 23). For nitrogen, the pressure is decreased
at a constant rate A = −dPl/dt. Assuming that the energy
barrier can be linearized as Eb = E∗

b
+ α (Pl − P∗

l
)kbT in the

vicinity of the cavitation threshold, the probability 6(Pl) that
cavitation has not occurred at pressure Pl in a pore of volume Vp

is (SI Appendix):

6(Pl) = exp
[
−
Vp

Aα
J(Pl)

]
. [4]

As shown in Materials and Methods, 6(Pl) =1/2 corresponds
to the middle of the cavitation step, i.e., to Pl = P∗

l
. The energy

barrier E∗
b

at the threshold is thus

E∗
b

= kbT ln [J0Vp/(Aα ln 2)] . [5]

For the volumetric measurements with helium, the flow rate
is imposed instead of the pressure ramp and the above expression
is modified as

E∗
b

= kbT ln [J0Vp/τ ] , [6]

where the characteristic time scale of cavitation, τ , is the duration
of the cavitation step (SI Appendix).

In Eqs. 5 and 6, A (or τ ) and Vp are known. For Eq. 5, we
approximate α by its CNT expression

(
∂ECNT

b
/∂Pl|T

)
/(kBT ).

As we will show below, this is correct within 20% (Fig. 6). Since
α enters Eq. 5 through a logarithmic factor, our approximation
has a negligible impact on E∗

b
. The last parameter is the prefactor

J0; for our experimental conditions, as usual for a cryogenic
liquid not too close to the critical point (3, 4) and for water(6)
close to room temperature, the dynamics of the critical bubble
is controlled by the viscous flow in the liquid. We use the

corresponding expression J0 = nl

σ∞
η

(
σ∞
kbT

)1/2
(1 − Pl/Pv)−1,

where nl is the number density of the liquid and η its viscosity
(23) and (5) and SI Appendix.

Plugging the above values in Eqs. 5 or 6 yields E∗
b

in the range
of 40 to 55 kbT for both nitrogen and helium (SI Appendix, Fig.
S2). Because the experimental parameters Vp and A or τ vary
from run to run, comparing our results with CNT is easier in
terms of the effective surface tension σ which, for a given fluid,
should only depend on the temperature and on the radius of
the critical bubble. Due to the thickness of the bubble interface,
different choices can be used for the bubble radius and for the
surface tension (24). When using the so-called stress radius R∗

s

and the associated surface tension σ (R∗
s
), for which the Laplace

equation R∗
s

= 2σ (R∗
s
)/(P∗

l
−P∗

v
) is satisfied, the energy barrier

is given by the CNT expression (Eq. 1), provided σ∞ is replaced
by σ (R∗

s
) (24). Equating this CNT expression to the measured

barrier thus yields the effective surface tension:

σ (T, R∗
s
) =

[
3

16π
E∗

b
(P∗

v
− P∗

l
)2

]1/3
= σ∞(T )

[
E∗

b

ECNT∗
b

]1/3
.

[7]

The ratio σ/σ∞ is plotted in Fig. 3 as a function of the
normalized radius |R∗

s
|/dlj as obtained from σ (T, R∗

s
) and

the Laplace equation for both nitrogen and helium, using,
respectively, for dlj the values 0.375 nm and 0.26 nm for nitrogen
and helium. For a given fluid, increasing values of R∗

s
correspond

to increasing temperatures, reflecting the fact that σ∞ decreases
when T increases while Eb only weakly depends on T . The plot
of σ/σ∞ as a function of the normalized temperature T /Tc can
be found in SI Appendix, Fig. S4.

Fig. 3 exhibits two important features. First, the surface tension
equals its bulk value for large critical bubbles (|R∗

s
|/dLJ > 10);

this implies that the CNT is valid in this regime and that
the evaluation of J0 is correct. Second, for small bubbles,
σ becomes significantly smaller than σ∞, in agreement with
expectation. For nitrogen, the relative deviation reaches−0.2 for
|R∗

s
|/dLJ ' 3, and −0.15 for helium for |R∗

s
|/dLJ ' 5. Data

from earlier cavitation experiments by Baidakov and coworkers
in superheated argon (3) and nitrogen (4) can be analyzed
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Fig. 3. Normalized surface tension as a function of the normalized bubble
curvature |R∗s |/dLJ. Data for helium are measured above the superfluid
transition. dLJ for helium and nitrogen are given in the text. The temperature
range is 65 to 120 K for nitrogen and 2.3 to 4.5 K for helium. The uncertainty
on �∞ is about 1% and is not taken into account in the evaluation of the error
bars (SI Appendix).

in the same way and yield a decrease of σ for small nucleus
consistent with our measurements, though with a much larger
scatter (SI Appendix, Fig. S7).

We stress that Fig. 3 cannot be used to test Eq. 2 or to
determine the respective first- and second-order corrections in
curvature. Indeed, in Fig. 3, R∗

s
varies together with T , whereas

because the Tolman length may depend on temperature*, a test
of Eq. 2 requires varying R∗

s
at a fixed temperature. Because R∗

s
=

2σ (R∗
s
)/(P∗

l
− P∗

v
), this amounts to vary P∗

v
. In the following,

we achieve this requirement by varying the cavitation rate.

Determination of the Generalized Tolman
Length from the Pressure Dependence of the
Cavitation Rate

The pressure dependence of the cavitation rate, or that of the
energy barrier, α = (∂Eb/∂Pl|T ) /(kBT ), can be determined by
using two different methods for nitrogen.

Relaxation after Quenching. The first method is similar to the
one we previously reported for hexane (1). Starting from a sample
fully filled with liquid, it consists in quenching the sample down
to a pressure Pl close to P∗

l
by decreasing the pressure at a fast rate

down to Pl and then closing the cell (Materials and Methods). As
shown in Fig. 4A andB, the optical signal1L then decreases with
time t to a limiting value 1L0 as exp(−t/τexp) (Fig. 4C ). 1L0
reflects the contribution of the fluid adsorbed on the walls of the
“emptied” pores at equilibrium and can be accurately determined
along the condensation branch of the isotherm (dashed line in
Fig. 1), at least when the condensation and evaporation branches
are well separated. Close to the cavitation step, the number of
filled pores is then proportional to 1L−1L0.

As a result, the number of filled pores exponentially decays
with the characteristic time τexp(Pl), and the nucleation rate
J(Pl) equals 1/(τexpVP). Repeating the experiment at different

*Such a temperature dependence of the Tolman length would naturally explain the
difference, for a given normalized radius |R∗s |/dLJ , in �/�∞ between nitrogen and helium,
the reduced temperature T/TC being different for both fluids.

BA

C D

Fig. 4. (A) Optical isotherms measured in nitrogen at 73 K on the porous
alumina sample C (Table 1) during quenching at various pressures. The total
measurement time is about 48 h. (B) Close-up of the isotherms showing
the relaxations at constant pressures 239.7, 240.36, 241.07, 241.86, 242.41,
243.24, 244.04, and 245.51 mbar. (C) Relaxation of 1L − 1L0 at constant
pressures (same values as in B).1L0 stands for the optical thickness of empty
pores (1L0 ' 0.12 μm, a small variation is allowed from run to run to account
for the small long-term drift). (D) Nucleation rate J as a function of the liquid
pressure: from the relaxation time measured in C (squares—the size of the
symbols sets the uncertainty) and from the shape of the isotherm measured
at constant pressure rate (line).

pressures, we determine the pressure dependence of the nucle-
ation rate. We find that J varies exponentially with Pl (Fig. 4D),
allowing to compute the value of α through Eq. 3.

We performed such relaxation experiments at two different
temperatures. The corresponding data points for α are shown in
red in Fig. 6. This method is simple but requires a very long-term
temperature stability. As discussed below, analyzing the shape of
a single isotherm provides a more efficient way to determine the
value of the parameter α.

Analysis of the Isotherm Shape. The magnification of the
cavitation step of Fig. 1 is shown in the Inset of Fig. 5. As
explained above, after subtracting the contribution 1L0 of the
fluid adsorbed in empty pores (dashed blue line, measured during
condensation), the signal is proportional to the number of filled
pores. When the pressure is decreased along the isotherm, this
number decreases through two mechanisms, namely cavitation
and meniscus recession. Assuming that the cavitation probability
does not depend on the aperture size, the ratio 9 between the
actual number of filled pores and the number that would be
expected without cavitation at a given pressure is

9 =
1Lp

1Lp +1Lv

, [8]

where the optical thicknesses1Lp and1Lv are defined in Fig. 5.
9(Pl) obeys (Materials and Methods):

d9
dPl

=
J(Pl)Vp

A
9. [9]

This is exactly the equation obeyed by 6(Pl) (SI Appendix,
Eq. 6). Hence, 9(Pl) is expected to show the characteristic
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Fig. 5. Fraction 9 of pores that have not cavitated at pressure Pl: experi-
mental points (crosses) and fit by the double exponential of the Eq. 4 (red
solid curve). Inset: close-up of the cavitation step of Fig. 1. The dotted curves
represent the signal1L0 for “empty” pores (blue) and the extrapolated signal
(red) that would be observed without cavitation.

double-exponential dependence of Eq. 4. Fig. 5 shows that this
is indeed the case, and the fit provides the value of α. The
uncertainty on α mainly originates from that on the extrapolated
contribution of the meniscus recession.

The result of this analysis can be directly compared to that
of the relaxation experiment by computing the nucleation rate
J(Pl) = (A/Vp) d ln9

dPl

from the corrected isotherm shape9(Pl).
As shown in Fig. 4D, both methods yield the same curves J(Pl)
at T = 73 K, which validates our method for correcting the
isotherm shape for the contribution of the meniscus recession.
The radius dependence of α, normalized by its CNT value, is
shown in Fig. 6. Again, we find that the CNT is correct for large
bubbles. Moreover, α decreases with |RS|, the correction reaching
20% for the smallest bubbles. Such a reduction is qualitatively
consistent with a reduction of the surface tension at small
scales.

For helium, a similar analysis can be used to extract the value of
α from the volumetric measurements. However, the uncertainty
on α is of order ±10% and we can only conclude qualitatively
that the parameter α is smaller than the CNT prediction for small
radii (SI Appendix). In the following, we thus focus on the results
for nitrogen.

Nucleation rate has also been measured for argon in conden-
sation experiments (25, 26). Comparing the nucleation rate J for
two different supersaturations S = PV/Psat allowed Sinha et al.
(25) to estimate the number n∗ of atoms in the critical nucleus us-
ing the nucleation theorem: n∗ = ∂(ln J)/∂(ln S)|T (27). From
this estimate, it is possible to derive α as α = n∗/n∗CNT. The
corresponding values are quite consistent with our measurement
for nitrogen bubbles, as shown in Fig. 6.

Generalized Tolman Length. In order to determine the curvature
dependence of σ for nitrogen, we use the fact that α can be
related to Re, the radius of the equimolar dividing surface (EDS)
defined such that there is no excess mass associated with the
interface. The EDS is different from the surface of tension (of
radius Rs), though one expects that both surfaces lay in the region
of the atomistically diffuse interface. Similarly to other work on
nucleation (19, 25, 28), we obtain the equimolar volume V ∗

e
of

Fig. 6. Plot of � = 1
kbT

∂Eb
∂Pl

∣∣∣∣
T

, normalized by its CNT value calculated

from Eq. 1. Red disks: this work, from the isotherm shape. Blue: this work,
from relaxation after quenching. Green open square are data for argon
condensation, derived from the work of Sinha et al. (25). Note that argon
values for � are plotted as a function of the critical EDS radius RE since the
stress radius RS cannot be derived from ref. 25.

the critical nucleus through the nucleation theorem which can
be written as ref. 27

V ∗
e

=
∂Eb

∂1P

∣∣∣∣
T
, [10]

where 1P = Pl − Pv. Applied to a spherical critical bubble of
radius Re, this leads to

4π
3
|R∗

e
|
3 = α

1
1− ρv/ρl

, [11]

where ρv and ρl are the density of the bulk vapor and liquid
phases at the cavitation threshold.

It is customary to call δ the (algebraic) distance between the
two surfaces:

δ = R∗
e
− R∗

s
, [12]

δ, rather than δ∞, is called the Tolman length by some authors. In
order to avoid any confusion, we will call below δ the generalized
Tolman length. The Tolman length δ∞ is properly defined as the
asymptotic value of δ in the limit of zero curvature. As conjectured
by Tolman (7), the natural assumption, which should be valid at
least at large radius, is to consider δ as a constant: δ ' δ∞. Eq. 2
is valid only at this level of approximation.

One can thus probe the validity of this first-order approxi-
mation by computing independently δ from R∗

e
and R∗

s
on the

one hand and, using Eq. 2, δ∞ from σ and R∗
s

on the other.
Although both parameters are found to have the same order of
magnitude (about—0.3 dLJ), δ is significantly smaller than δ∞
(SI Appendix, Fig. S5). This implies that δ cannot be considered
as a constant and σ cannot be described by a first-order expansion
in curvature. This conclusion makes sense in view of the small
radii of cavitation bubbles (2.5 to 10 dLJ) in the temperature
range where α is measured.

Curvature Dependence of the Surface Tension

Our results show the necessity to go beyond the above first-order
approximation and to allow for a dependence of δ on curvature.
Simulations suggest the following dependence (24):
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δ = δ∞ +
c
Rs

. [13]

The corresponding expansion of the surface tension reads (29):

σ∞

σ (R)
= 1 +

2δ∞
Rs

+
δ2
∞ + c
R2

s

. [14]

Following Bruot and Caupin (20), it is straightforward to
compute the two parameters δ∞ and c from the knowledge of
the energy barrier E∗

b
and the radius Re we refer the reader to ref.

20 for the details of the algebra.
The second-order expansion is more customarily written in a

Helfrich form (8, 11, 12, 14):

σ (R) = σ∞

(
1−

2δ∞
Rs

)
+
κ

R2
s

, [15]

where κ is the average curvature-elastic modulus, involving both
the bending rigidity and the rigidity constant associated with
Gaussian curvature. Identification of Eqs. 14 and 15 yields κ =
σ∞(3δ2

∞ − c).
The results for nitrogen are summarised in Fig. 7, where we

compare the asymptotic Tolman length δ∞ and the rigidity
constant κ as a function of temperature to the predictions of

Fig. 7. Top: normalized asymptotic Tolman length �∞/dLJ. Bottom: normal-
ized rigidity constant �/�LJ. Lines are the results of DFT calculations: full line
from ref. 11, dashed line from ref. 12.

two different DFT calculations for a Lennard-Jones fluid. In
the middle of the temperature range, we find δ∞/dLJ ' −0.1
and κ/εLJ ' −0.8, in reasonable agreement with the DFT
calculations (εLJ = 98kB is the LJ characteristic energy scale).
Within the experimental uncertainty, κ is constant, consistent
with the DFT calculations. On the other hand, |δ∞| seems to
increase with temperature in the whole experimental range, a
behavior not expected from the DFT.

We also applied the same analysis to the data that we obtained
earlier with hexane at room temperature (1). We find δ∞/dLJ '

−0.15 and κ/εLJ ' −0.9, very close to the parameters for
nitrogen at the same normalized temperature T /TC = 0.57
(with dLJ = 0.54 nm and εLJ = 400kB for hexane).

Returning to the surface tension, it turns out that the first-
and second-order contributions in Eq. 14 are of similar magni-
tude over the whole explored temperature range (SI Appendix,
Fig. S6). Thus, the simple functional form proposed by Tolman(
σ ∝ 1

1+C t/R

)
fails to capture the curvature dependence of the

surface tension. This seems to be a general feature for nuclei
of nanometer size, as the same conclusion has been drawn
for ordinary liquids (ethanol, heptane, and water) at room
temperature (20).

Conclusion

As a first practical remark, this work demonstrates that contin-
uous measurements of evaporation in a porous material are a
powerful tool to investigate cavitation statistics. Here, we have
focused on simple fluids, but our technique can be applied to any
volatile fluid.

Using nitrogen and helium, we have shown that the classical
nucleation theory correctly predicts the cavitation threshold as
well as the parameter α = (1/kbT ) (∂Eb/∂Pl|T ) when the
critical bubbles are large enough, that is at high temperature.
At low temperature, for a bubble radius smaller than about 10
times the molecular size, the simple CNT approach is still valid
if, instead of the bulk surface tension σ∞, one uses an effective
surface tension σ (R). In the range R/dLJ < 10, we find that an
expansion up to second order in curvature is necessary to account
for the experimental results. Presently, the measured values of
the Tolman length and rigidity are consistent with DFT but
the accuracy of both experiment and calculation is still not high
enough to elucidate what happens moderately close to the critical
temperature (T /TC ∼ 0.9).

To summarize, a macroscopic description of critical cavitation
bubbles is quantitatively valid down to the nanometer scale if the
surface tension is corrected for the interface curvature. Beyond
cavitation, our results give a firmer basis to the concept of an
effective surface tension σ (R) and suggest that the simple and
powerful tools of capillarity can be used in any situations where
the liquid–vapor meniscus is highly curved.

Materials and Methods

Samples. Details of the synthesis of the samples can be found in ref. 1 for porous
alumina samples and ref. 21 for porous silicon samples. In porous alumina
samples, the cylindrical pores are independent with a narrow distribution in
diameter. In porous silicon, recent studies (21, 30, 31) have shown that the
pore network is more disordered: the pores are still aligned along the etching
direction, but constrictions are present along the pores, as well as connections
between neighboring pores. The pores size distribution is also quite wide: for
the sample used in this work, the mean transverse dimension<d> = 50 nm,
with 23 < d < 80 nm.
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Table 1. Characteristics of porous samples
Mean pore diameter Pore length RMAX

S
Sample (nm) (μm) (nm)

Porous silicon 50 2 5.5
Porous alumina - A 33 5.4 2.8
Porous alumina - B 19 7 2.2
Porous alumina - C 11 8 1.1
Porous alumina - D 36 85 3.5

For nitrogen experiments, we report only measurements where P∗V is
independent on the pore diameter, so that the fluid–wall interaction is not
relevant and the cavitation homogeneous. In practice, we find that this limit
is reached when the radius is of the critical nucleus R∗S is smaller than about
one-fifth of the pore diameter (the maximum value RMAX

S of R∗S is given in
Table 1). This limit is also consistent with an earlier study of cavitation in porous
silica (32).

For helium, the data discussed in this paper are restricted to temperatures
smaller than 4.5 K, corresponding to a R∗S smaller than 3.5 nm. Based on the
theoretical effect of confinement (33), this ensures a negligible influence of
confinement on cavitation.

Cell for Optical Measurements with Nitrogen. In contrast to standard
volumetric setups, the dead volume around the sample in the optical cell is
very large, about 50 cc. This is not an issue because interferometry only probes
the fluid content in the pores. Moreover, it has two important advantages: First, it
allows to reach the required low-pressure rates with standard flowmeters (Brooks
5850 series). Second, it makes the relaxation experiments at a fixed pressure
straightforward: We only need to close the cell once the desired pressure
is reached since the subsequent liquid evaporation from the porous sample
causes a negligible pressure increase (Fig. 4B).

Volumetric Measurements with Helium. Helium cavitation is studied by
connecting the experimental cell filled with liquid helium to a vacuum pump
through a controllable microvalve and measuring the cell pressure using a room-
temperature pressure gauge connected to the cell through a separate 0.2-mm
diameter capillary. Thermomolecular effects were computed to be negligible in
the range of temperatures and pressures studied, so that the pressure read by
the gauge equals the cell pressure. The cavitation isotherm is obtained from the
time dependence of this pressure, and an analysis similar to that used above for
nitrogen yields the pressure dependence of the cavitation rate (SI Appendix).

Calculation of the Liquid Pressure PL. For a vapor pressure PL in the vapor
reservoir outside the pores, the pressure PL of the metastable liquid in the

pores is calculated assuming that the chemical potentials of the two phases
are equal. The chemical potential of the vapor is calculated using the NIST
values for fugacity (for nitrogen) or by numerical integration over pressure of
the NIST volume data (for helium). The chemical potential of the metastable
liquid phase is calculated assuming that the liquid compressibility is equal to
the compressibility at saturated vapor pressure. This is consistent with the fact
that nucleation occurs far from the spinodal. In principle, the measurement of
the optical thickness L on the saturation plateau of the isotherm could be used
to determine the metastable liquid compressibility for nitrogen and to check its
sensitivity to the confinement (34). However, because we cannot preclude that
the L variation is partially due to the emptying of the larger pores, we can only
obtain an upper bound for the compressibility (SI Appendix). This upper bound
is enough to estimate the uncertainty on PL.

For both nitrogen and helium, the typical effect on PL of the liquid
compressibility is less than 3%, with an uncertainty due to the assumption
of a constant compressibility of about 1%.

Equation for9(PL). Above the cavitation step, the variationdNR of the number
of filled pores due to evaporation by meniscus recession in the pressure interval
dPV is dNR = aVdPV, the coefficient aV being proportional to the slope of the
isotherm (red dotted line in Fig. 5). As the cavitation step is very sharp, one
can assume that, if cavitation would not occur, the number of pores N′(PV)
remaining filled would be the extrapolation of the behavior above the cavitation
step, hence follows the red dotted line, so that dN′ = aVdPV, or in PL variable,
dN′ = aLdPL.

If we now include cavitation, the actual number of filled pores is N =
9N′ < N′. If recession and cavitation are independent processes, the actual
number of pores emptying through recession is simply decreased by a factor9:
dNR = 9(aLdPL). The total number dN of pores emptying through cavitation
and recession is thus

dN =

(
J(PL)VP

N
A

+ aL9

)
dPL. [16]

Using this equation to compute the derivative of 9 = N/N′ yields Eq. 9.
Note that the identity with the equation for6 implies that6=1/2 for9=1/2,
i.e., the point at midheight of the cavitation step.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix.
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